(2,5-dimethylanilino)thiourea, also known as **N-(2,5-dimethylphenyl)thiourea**, is an organic compound with the chemical formula **C9H12N2S**. It is a white crystalline solid that is soluble in organic solvents.
**Importance in Research:**
(2,5-dimethylanilino)thiourea has found applications in various research areas, including:
* **Metal coordination chemistry:** It acts as a **ligand** in coordination complexes with various metals, forming stable complexes due to its nitrogen and sulfur donor atoms. These complexes have potential applications in catalysis, materials science, and medicine.
* **Organic synthesis:** The compound serves as a **building block** in the synthesis of various organic compounds, including heterocycles and polymers. It can be used as a starting material for the synthesis of pharmaceuticals, agrochemicals, and other functional materials.
* **Materials science:** It can be incorporated into **organic semiconductors** and **polymers** to enhance their electronic properties.
* **Analytical chemistry:** It can be used as a **reagent** for the detection and quantification of certain metal ions and other analytes.
**Other potential applications:**
* **Antimicrobial activity:** Studies have shown that (2,5-dimethylanilino)thiourea exhibits **antibacterial** and **antifungal** properties.
* **Antioxidant activity:** It has also been reported to possess **antioxidant** properties, which may be beneficial in protecting against oxidative stress.
**Overall:**
(2,5-dimethylanilino)thiourea is a versatile organic compound with promising applications in diverse research fields. Its ability to coordinate with metals, serve as a building block in synthesis, and exhibit various biological activities makes it an interesting molecule for further investigation.
**Note:** The importance and applications of this compound are constantly evolving as research progresses. Therefore, the information provided should be considered as a starting point for further investigation.
ID Source | ID |
---|---|
PubMed CID | 3818657 |
CHEMBL ID | 1383584 |
CHEBI ID | 108565 |
Synonym |
---|
MLS000720623 |
2-(2,5-dimethylphenyl)-1-hydrazinecarbothioamide |
smr000336377 |
CHEBI:108565 |
AKOS005086087 |
(2,5-dimethylanilino)thiourea |
56737-76-9 |
[(2,5-dimethylphenyl)amino]thiourea |
2P-058 |
CHEMBL1383584 |
Q27187490 |
2-(2,5-dimethylphenyl)hydrazinecarbothioamide |
DTXSID901251255 |
mfcd03618005 |
Class | Description |
---|---|
phenylhydrazines | Any member of the class of hydrazines carrying a phenyl substituent. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Putative fructose-1,6-bisphosphate aldolase | Giardia intestinalis | Potency | 15.8114 | 0.1409 | 11.1940 | 39.8107 | AID2451 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 39.8107 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 50.1187 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
GLS protein | Homo sapiens (human) | Potency | 11.2202 | 0.3548 | 7.9355 | 39.8107 | AID624170 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 12.5893 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 35.4813 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 9.9237 | 0.0366 | 19.6376 | 50.1187 | AID2100 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 5.0119 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 15.8489 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 20.0850 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
Vpr | Human immunodeficiency virus 1 | Potency | 56.2341 | 1.5849 | 19.6264 | 63.0957 | AID651644 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |