You're describing a chemical compound with a rather complex name: **(2,3-dimethoxyphenyl)-(1-pyrrolidinyl)methanethione**. Here's a breakdown and its potential research significance:
**Structure and Components:**
* **(2,3-dimethoxyphenyl):** This part indicates a phenyl ring (a six-membered ring with alternating single and double bonds) with two methoxy groups (-OCH3) attached at the 2nd and 3rd positions.
* **-(1-pyrrolidinyl):** This refers to a pyrrolidine ring (a five-membered ring with a nitrogen atom) with the nitrogen attached to the rest of the molecule.
* **methanethione:** This indicates a carbon atom (methane) connected to a sulfur atom with a double bond (thione).
**Putting it Together:**
The full molecule consists of a phenyl ring with methoxy groups, connected to a pyrrolidine ring, and then to a thiocarbonyl group (C=S).
**Potential Research Importance:**
This compound's exact research significance is difficult to pinpoint without additional context. However, given its structure, it could be relevant in several areas:
* **Pharmacology/Medicinal Chemistry:**
* **Potential Drug Lead:** Thiocarbonyl groups are sometimes found in bioactive compounds. The dimethoxyphenyl and pyrrolidine groups could contribute to its ability to bind to biological targets.
* **Analog Synthesis:** This compound might serve as a starting point for synthesizing analogs (similar but slightly modified compounds) to explore structure-activity relationships and develop new drugs.
* **Organic Chemistry/Material Science:**
* **New Material Development:** The combination of aromatic (phenyl) and heteroaromatic (pyrrolidine) rings with a thiocarbonyl group could lead to novel materials with unique properties.
* **Catalyst Development:** The presence of sulfur and nitrogen suggests potential applications as catalysts or in catalytic reactions.
**Important Note:**
* To understand the specific importance of this compound, we need more information about the context of its research. It could be a synthetic intermediate, a potential drug candidate, or a material science research target.
* It's important to check relevant scientific databases and publications for specific research related to this particular molecule.
Let me know if you have additional details about its context, and I might be able to give a more focused answer!
ID Source | ID |
---|---|
PubMed CID | 975411 |
CHEMBL ID | 1531137 |
CHEBI ID | 107031 |
Synonym |
---|
MLS001183646 |
smr000502810 |
STK108313 |
(2,3-dimethoxyphenyl)(pyrrolidin-1-yl)methanethione |
CHEBI:107031 |
(2,3-dimethoxyphenyl)-pyrrolidin-1-ylmethanethione |
AKOS005068426 |
HMS2821N03 |
CHEMBL1531137 |
Q27184917 |
(2,3-dimethoxyphenyl)-(1-pyrrolidinyl)methanethione |
sr-01000269710 |
SR-01000269710-1 |
Class | Description |
---|---|
dimethoxybenzene | Any methoxybenzene that consists of a benzene skeleton substituted with two methoxy groups and its derivatives. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 50.1187 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
regulator of G-protein signaling 4 | Homo sapiens (human) | Potency | 10.0000 | 0.5318 | 15.4358 | 37.6858 | AID504845 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 8.9125 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 79.4328 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 17.7828 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 23.7781 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 44.6684 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 2.5456 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 0.3162 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 12.5893 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |