A monocarboxylic acid that is 4-oxo-1,4-dihydroquinoline-3-carboxylic acid which is substituted on the nitrogen by a cyclopropyl group and at positions 6, 7, and 8 by fluoro, 3-methylpiperazin-1-yl, and methoxy groups, respectively. Gatifloxacin is an antibiotic of the fourth-generation fluoroquinolone family, that like other members of that family, inhibits the bacterial topoisomerase type-II enzymes.
ChEBI ID: 5280
There are 4 compounds belonging to this class, involving 3 studies.
Member | Definition | Role |
---|---|---|
(S)-gatifloxacin | The (S)-enantiomer of gatifloxacin. | ; |
(R)-gatifloxacin | The (R)-enantiomer of gatifloxacin. | ; |
Pre-1990 | 1990-2000 | 2001-2010 | 2011-2020 | Post-2020 |
---|---|---|---|---|
0 | 0 | 2 | 0 | 0 |
Article |
---|
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential. |
Hologram QSAR model for the prediction of human oral bioavailability.
A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening. |