A cyclopropylcarboxamide obtained by formal condensation of the carboxy group of 2,2-dichloro-1-ethyl-3-methylcyclopropanecarboxylic acid with the amino group of 1-(4-chlorophenyl)ethylamine. A rice fungicide with specific action against Pyricularia oryzae. It is not highly toxic to mammals but shows a moderate level of toxicity to birds, fish and earthworms.
ChEBI ID: 3434
There is 1 compound belonging to this class, involving 3 study.
Member | Definition | Role |
---|---|---|
(1S,3R)-2,2-dichloro-N-[(1R)-1-(4-chlorophenyl)ethyl]-1-ethyl-3-methylcyclopropanecarboxamide |
Pre-1990 | 1990-2000 | 2001-2010 | 2011-2020 | Post-2020 |
---|---|---|---|---|
0 | 3 | 0 | 0 | 0 |
Article |
---|
Selection of a potent inhibitor of trihydroxynaphthalene reductase by sorting disease control data.
Compounds that control rice blast, but not other crop diseases, were selected for testing as inhibitors of trihydroxynaphthalene reductase of the fungal melanin biosynthetic pathway. A potent inhibitor of the enzyme (2) (Ki = 25 nM) was identified. An X-ray structure of the enzyme-NADPH-2 complex was determined at 2.1 A resolution. |
High-resolution structures of scytalone dehydratase-inhibitor complexes crystallized at physiological pH.
Scytalone dehydratase is a molecular target of inhibitor design efforts aimed at preventing the fungal disease caused by Magnaporthe grisea. A method for cocrystallization of enzyme with inhibitors at neutral pH has produced several crystal structures of enzyme-inhibitor complexes at resolutions ranging from 1.5 to 2.2 A. Four high resolution structures of different enzyme-inhibitor complexes are described. In contrast to the original X-ray structure of the enzyme, the four new structures have well-defined electron density for the loop region comprising residues 115-119 and a different conformation between residues 154 and 160. The structure of the enzyme complex with an aminoquinazoline inhibitor showed that the inhibitor is in a position to form a hydrogen bond with the amide of the Asn131 side chain and with two water molecules in a fashion similar to the salicylamide inhibitor in the original structure, thus confirming design principles. The aminoquinazoline structure also allows for a more confident assignment of donors and acceptors in the hydrogen bonding network. The structures of the enzyme complexes with two dichlorocyclopropane carboxamide inhibitors showed the two chlorine atoms nearly in plane with the amide side chain of Asn131. The positions of Phe53 and Phe158 are significantly altered in the new structures in comparison to the two structures obtained from crystals grown at acidic pH. The multiple structures help define the mobility of active site amino acids critical for catalysis and inhibitor binding. |
Cryogenic X-ray crystal structure analysis for the complex of scytalone dehydratase of a rice blast fungus and its tight-binding inhibitor, carpropamid: the structural basis of tight-binding inhibition.
Scytalone dehydratase is a member of the group of enzymes involved in fungal melanin biosynthesis in a phytopathogenic fungus, Pyricularia oryzae, which causes rice blast disease. Carpropamid [(1RS,3SR)-2, 2-dichloro-N-[(R)-1-(4-chlorophenyl)ethyl]-1-ethyl-3-methylcyclopropa necarboxamide] is a tight-binding inhibitor of the enzyme. To clarify the structural basis for tight-binding inhibition, the crystal structure of the enzyme complexed with carpropamid was analyzed using diffraction data collected at 100 K. The structural model was refined to a crystallographic R-factor of 0.180 against reflections up to a resolution of 2.1 A. Carpropamid was bound in a hydrophobic cavity of the enzyme. Three types of interactions appeared to contribute to the binding. (i) A hydrogen bond was formed between a chloride atom in the dichloromethylethylcyclopropane ring of carpropamid and Asn-131 of the enzyme. (ii) The (chlorophenyl)ethyl group of carpropamid built strong contacts with Val-75, and this group further formed a cluster of aromatic rings together with four aromatic residues in the enzyme (Tyr-50, Phe-53, Phe-158, and Phe-162). (iii) Two hydration water molecules bound to the carboxamide group of carpropamid, and they were further hydrogen-bonded to Tyr-30, Tyr-50, His-85, and His-110. As a result of interactions between carpropamid and the phenylalanine residues (Phe-158 and Phe-162) in the C-terminal region of the enzyme, the C-terminal region completely covered the inhibitor, ensuring its localization in the cavity. |